

Denoised Self-Augmented Learning for Social Recommendation

Tianle Wang, Lianghao Xia, Chao Huang*

University of Hong Kong, Hong Kong louiswong.cs@connect.hku.hk, aka_xia@foxmail.com chaohuang75@gmail.com

https://github.com/HKUDS/DSL

— IJCAI 2023

- 1.Introduction
- 2.Method
- 3. Experiments

Introduction

In practical social recommendation scenarios, however, user-item interaction data is often very **sparse**.

The SSL-based augmentation is severely hindered by **noisy social relations** when enhancing the representation learning of complex user preferences.

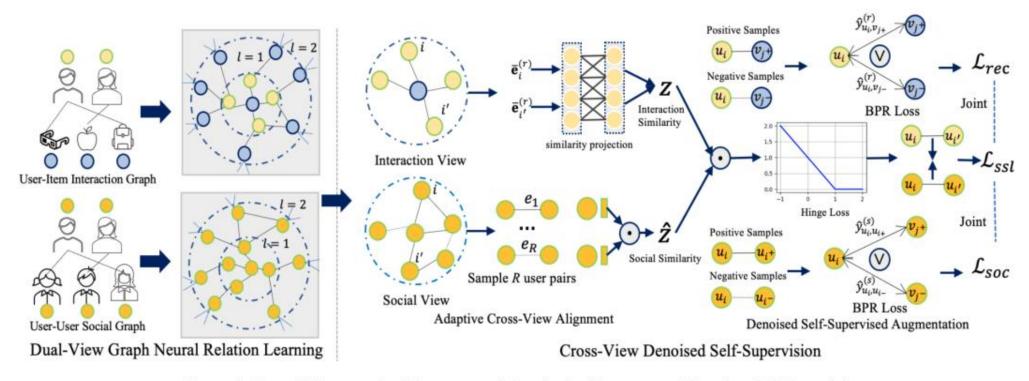
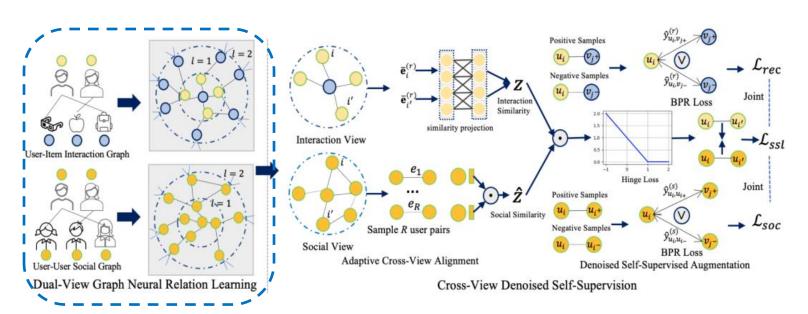
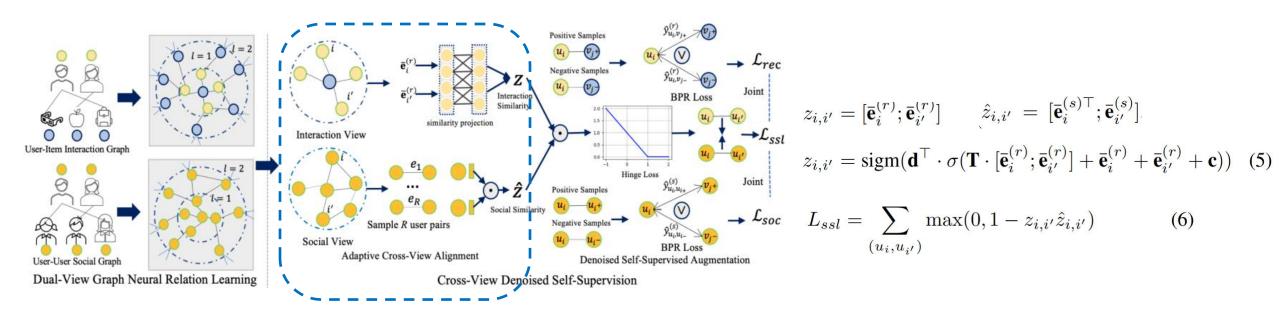



Figure 1: Overall framework of the proposed denoised self-augmented learning (DSL) model.

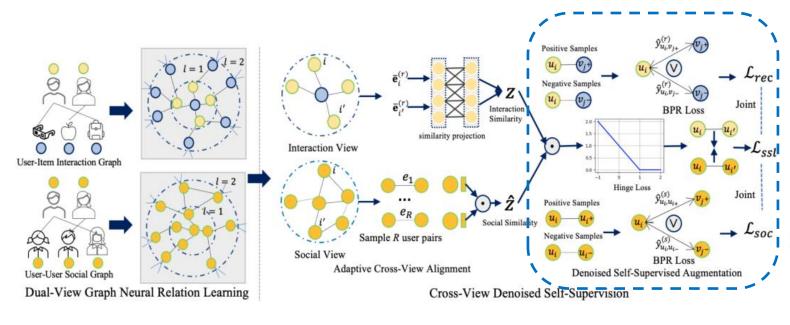
Method

$$\mathcal{U} = \{u_1, ..., u_I\}$$
 $\mathcal{V} = \{v_1, ..., v_J\}$ $\mathcal{G}_r = \{\mathcal{U}, \mathcal{V}, \mathcal{E}_r\}$ $\mathcal{G}_s = \{\mathcal{U}, \mathcal{E}_s\}$

Dual-View Graph Neural Relation Learning


$$\mathbf{E}_r^{(l)} = (\mathcal{L}_r + \mathbf{I}) \cdot \mathbf{E}_r^{(l-1)} \tag{1}$$

$$\mathcal{L}_r = \mathbf{D}_r^{-\frac{1}{2}} \mathbf{A}_r \mathbf{D}_r^{-\frac{1}{2}}, \quad \mathbf{A}_r = \begin{bmatrix} \mathbf{0} & \mathbf{R} \\ \mathbf{R}^\top & \mathbf{0} \end{bmatrix}$$
 (2)


$$\mathbf{E}_s^{(l)} = (\mathcal{L}_s + \mathbf{I}) \cdot \mathbf{E}_s^{(l-1)}, \quad \mathcal{L}_s = \mathbf{D}_s^{-\frac{1}{2}} \mathbf{S} \, \mathbf{D}_s^{-\frac{1}{2}}$$
(3)

$$\bar{\mathbf{E}}_r = \sum_{l=0}^{L} \mathbf{E}_r^{(l)}, \quad \bar{\mathbf{E}}_s = \sum_{l=0}^{L} \mathbf{E}_s^{(l)}$$
 (4)

Method

Method

$$\hat{y}_{u_i,v_j}^{(r)} = \bar{\mathbf{e}}_i^{(r)\top} \bar{\mathbf{e}}_j^{(r)}; \quad \hat{y}_{u_i,u_{i'}}^{(s)} = \bar{\mathbf{e}}_i^{(s)\top} \bar{\mathbf{e}}_{i'}^{(s)}$$
(7)

$$L_{rec} = \sum_{(u_i, v_{j+}, v_{j-})} -\ln \operatorname{sigm}(\hat{y}_{u_i, v_{j+}}^{(r)} - \hat{y}_{u_i, v_{j-}}^{(r)})$$

$$L_{soc} = \sum_{(u_i, u_{i+}, u_{i-})} -\ln \operatorname{sigm}(\hat{y}_{u_i, u_{i+}}^{(s)} - \hat{y}_{u_i, u_{i-}}^{(s)})$$
(8)

$$L_{soc} = L_{rec} + \lambda_1 L_{soc} + \lambda_2 L_{ssl} + \lambda_3 (\|\mathbf{E}_u\|_F^2 + \|\mathbf{E}_v\|_F^2)$$
 (9)

$$\frac{\partial L_{cl}}{\partial \bar{\mathbf{e}}_i} = -\bar{\mathbf{e}}_{i^+} + \sum_{u_{i^-}} \bar{\mathbf{e}}_{i^-} \frac{\exp \bar{\mathbf{e}}_i^\top \bar{\mathbf{e}}_{i^-}}{\sum_{u_{i^-}} \exp \bar{\mathbf{e}}_i^\top \bar{\mathbf{e}}_{i^-}}$$
(10)

$$\frac{\partial L_{ssl}}{\partial \bar{\mathbf{e}}_i} = \sum_{u_{i'}} -z_{i,i'} \bar{\mathbf{e}}_{i'} \tag{11}$$

Data	Ciao	Epinions	Yelp
# Users	6,672	11,111	161,305
# Items	98,875	190,774	114,852
# Interactions	198,181	247,591	1,118,645
Interaction Density	0.0300%	0.0117%	0.0060%
# Social Ties	109,503	203,989	2,142,242

Table 1: Statistical information of evaluated datasets.

Dataset	Metrics	PMF	TrustMF	DiffNet	DGRec	EATNN	NGCF+	MHCN	KCGN	SMIN	DSL	%Imp
Ciao	HR	0.4223	0.4492	0.5544	0.4658	0.4255	0.5629	0.5950	0.5785	0.5852	0.6374	26.0
Ciao	NDCG	0.2464	0.2520	0.3167	0.2401	0.2525	0.3429	0.3805	0.3552	0.3687	0.4065	37.2
Epinions	HR	0.1686	0.1769	0.2182	0.2055	0.1576	0.2969	0.3507	0.3122	0.3159	0.3983	76.9
Epimons	NDCG	0.0968	0.0842	0.1162	0.0908	0.0794	0.1582	0.1926	0.1721	0.1867	0.2290	96.2
Yelp	HR	0.7554	0.7791	0.8031	0.7950	0.8031	0.8265	0.8571	0.8484	0.8478	0.8923	10.1
Telp	NDCG	0.5165	0.5424	0.5670	0.5593	0.5560	0.5854	0.6310	0.6028	0.5993	0.6599	15.5

Table 2: Recommendation performance of different methods. %Imp denotes relative improvements over all baselines on average.

Data	Ci	ao	Epin	nions	Yelp		
Metrics	HR	NDCG	HR	NDCG	HR	NDCG	
DSAL-d	0.615	0.399	0.354	0.207	0.887	0.658	
DSAL-s	0.594	0.374	0.327	0.169	0.839	0.621	
DSAL-c	0.603	0.388	0.336	0.199	0.889	0.662	
DSAL	0.637	0.406	0.398	0.229	0.892	0.659	

Table 3: Component-wise ablation study of DSL.

Metrics	PMF	TrustMF	DiffNet	DGRec	EATNN	NGCF+	MHCN	KCGN	SMIN	DSL	%Imp
HR@5	0.3032	0.3133	0.3963	0.3035	0.3259	0.4263	0.4762	0.4361	0.4565	0.5007	35.2
NDCG@5	0.2071	0.2073	0.2650	0.1872	0.2342	0.3020	0.3479	0.3094	0.3298	0.3626	43.0
HR@10	0.4223	0.4492	0.5544	0.4658	0.4255	0.5629	0.5950	0.5785	0.5852	0.6374	26.0
NDCG@10	0.2464	0.2520	0.3167	0.2401	0.2525	0.3429	0.3805	0.3552	0.3687	0.4065	37.2
HR@20	0.5565	0.6133	0.6973	0.6193	0.5309	0.7032	0.7418	0.7191	0.7000	0.7683	18.6
NDCG@20	0.2799	0.3020	0.3514	0.2746	0.2838	0.3675	0.4241	0.3844	0.3780	0.4353	31.6

Table 4: Ranking performance on Ciao dataset with varying Top-N values in terms of HR@N and NDCG@N

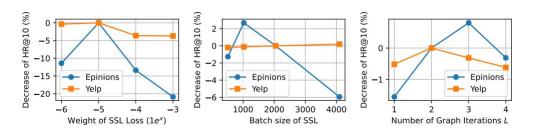


Figure 2: We conduct a hyperparameter study of the DSL with respect to i) SSL loss weight for regularization, ii) batch size for training, and iii) # of propagation layers for message passing.

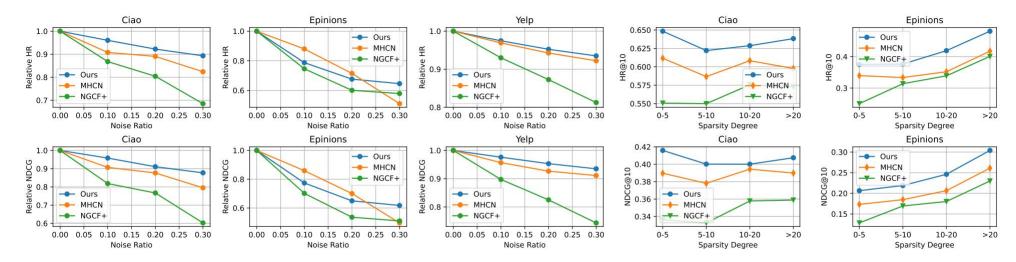


Figure 3: Model robustness study w.r.t data noise and data sparsity, in terms of HR@N and NDCG@N.

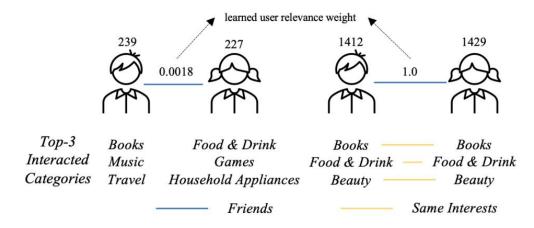


Figure 4: Case study on denoising social relations for modeling useritem interaction patterns with sampled socially-connected user pairs.

Data	DiffNet	NGCF+	MHCN	KCGN	SMIN	Our
Ciao	8.1	8.2	4.92	26.9	7.8	3.2
Epinions	39.1	16.3	9.34	49.4	19.7	6.1
Yelp	692.9	124.6	56.2	132.5	75.3	58.6

Table 5: Model computational cost measured by running time (s).

Thank you!